PORTO-
FREI

Categories for the Working Mathematician

von Mac Lane, Saunders   (Autor)

Categories for the Working Mathematician provides an array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. The book then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterized by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including two new chapters on topics of active interest. One is onsymmetric monoidal categories and braided monoidal categories and the coherence theorems for them. The second describes 2-categories and the higher dimensional categories which have recently come into prominence. The bibliography has also been expanded to cover some of the many other recent advances concerning categories.

Buch (Kartoniert)

EUR 59,87

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

  Verlagsbedingte Lieferzeit ca. 3 - 6 Werktage.
(Print on Demand. Lieferbar innerhalb von 3 bis 6 Tagen)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

Categories for the Working Mathematician provides an array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. The book then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterized by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including two new chapters on topics of active interest. One is onsymmetric monoidal categories and braided monoidal categories and the coherence theorems for them. The second describes 2-categories and the higher dimensional categories which have recently come into prominence. The bibliography has also been expanded to cover some of the many other recent advances concerning categories. 

Inhaltsverzeichnis

I. Categories, Functors, and Natural Transformations.- II. Constructions on Categories.- III. Universals and Limits.- IV. Adjoints.- V Limits.- VI. Monads and Algebras.- VII. Monoids.- VIII. Abelian Categories.- IX. Special Limits.- X. Kan Extensions.- XI. Symmetry and Braiding in Monoidal Categories.- XII. Structures in Categories.- Appendix. Foundations.- Table of Standard Categories: Objects and Arrows.- Table of Terminology. 

Kritik


From the reviews of the second edition:

"The book under review is an introduction to the theory of categories which, as the title suggests, is addressed to the (no-nonsense) working mathematician, thus presenting the ideas and concepts of Category Theory in a broad context of mainstream examples (primarily from algebra). ... the book remains an authoritative source on the foundations of the theory and an accessible first introduction to categories. ... It is very well-written, with plenty of interesting discussions and stimulating exercises." (Ittay Weiss, MAA Reviews, July, 2014)

Second Edition

S.M. Lane

Categories for the Working Mathematician

"A very useful introduction to category theory."-INTERNATIONALE MATHEMATISCHE NACHRICHTEN 

Mehr vom Verlag:

k.A.

Mehr aus der Reihe:

Mehr vom Autor:

Mac Lane, Saunders

Produktdetails

Medium: Buch
Format: Kartoniert
Seiten: 332
Sprache: Englisch
Erschienen: November 2010
Auflage: 2nd edition 1978. Softcover reprint of the original 2nd edition 1978
Sonstiges: 978-1-4419-3123-8
Maße: 229 x 152 mm
Gewicht: 482 g
ISBN-10: 1441931236
ISBN-13: 9781441931238

Bestell-Nr.: 9670329 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 4 (max 9.999)
 

Ist ein Paket? 0
Rohertrag: 13,99 €
Porto: 1,84 €
Deckungsbeitrag: 12,15 €

LIBRI: 0000000
LIBRI-EK*: 41.96 € (25%)
LIBRI-VK: 59,87 €
Libri-STOCK: 0
LIBRI: 097 Print on Demand. Lieferbar innerhalb von 7 bis 10 Tagen * EK = ohne MwSt.

UVP: 2 
Warengruppe: 16240 

KNO: 28418856
KNO-EK*: 41.69 € (25%)
KNO-VK: 59,87 €
KNO-STOCK: 0
KNO-MS: 18

KNO-SAMMLUNG: Graduate Texts in Mathematics 5
KNOABBVERMERK: 2nd ed. 2010. xii, 318 S. XII, 318 p. 229 mm
KNOSONSTTEXT: 978-1-4419-3123-8
Einband: Kartoniert
Auflage: 2nd edition 1978. Softcover reprint of the original 2nd edition 1978
Sprache: Englisch
Beilage(n): Paperback

Im Themenkatalog stöbern

› Start › English Books

Entdecken Sie mehr

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie