PORTO-
FREI

Representation Theory

A First Course

von Harris, Joe / Fulton, William   (Autor)

Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.

Buch (Kartoniert)

EUR 69,54

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

  Verlagsbedingte Lieferzeit ca. 3 - 6 Werktage.
(Print on Demand. Lieferbar innerhalb von 3 bis 6 Tagen)

Versandkostenfrei*

Dieser Artikel kann nicht bestellt werden.
 

Produktbeschreibung

The primary goal of these lectures is to introduce the beginner to the
finite-dimensional representations of Lie groups and Lie algebras. Intended
to serve non-specialists, the concentration of the text is on examples.
The general theory is developed sparingly, and then mainly as a useful
and unifying language to describe phenomena already encountered in concrete
cases. The book begins with a brief tour through representation theory
of finite groups, with emphasis determined by what is useful for Lie Groups;
in particular, the symmetric groups are treated in some detail. The focus
then turns to Lie groups and Lie Algebras and finally to the heart of the
course: working out the finite dimensional representations of the classical
groups and exploring the related geometry. The goal of the last portion
of the book is to make a bridge between the example-oriented approach of
the earlier parts and the general theory.  

Inhaltsverzeichnis

I: Finite Groups.- 1. Representations of Finite Groups.- 2. Characters.- 3.
Examples; Induced Representations; Group Algebras; Real Representations.- 4.
Representations of: $$ {\mathfrak{S}_d}$$ Young Diagrams and Frobenius's
Character Formula.- 5. Representations of $$ {\mathfrak{A}_d}$$ and $$
G{L_2}\left( {{\mathbb{F}_q}} \right)$$.- 6. Weyl's Construction.- II: Lie
Groups and Lie Algebras.- 7. Lie Groups.- 8. Lie Algebras and Lie Groups.- 9.
Initial Classification of Lie Algebras.- 10. Lie Algebras in Dimensions One,
Two, and Three.- 11. Representations of $$
\mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.- 12. Representations of $$
\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part I.- 13. Representations of $$
\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part II: Mainly Lots of Examples.-
III: The Classical Lie Algebras and Their Representations.- 14. The General
Set-up: Analyzing the Structure and Representations of an Arbitrary Semisimple
Lie Algebra.- 15. $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$
\mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.- 16. Symplectic Lie Algebras.- 17. $$
\mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$ and $$
\mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.- 18. Orthogonal Lie Algebras.- 19. $$
\mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$
\mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$ and $$
\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- 20. Spin Representations of $$
\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- IV: Lie Theory.- 21. The
Classification of Complex Simple Lie Algebras.- 22. $$ {g_2}$$and Other
Exceptional Lie Algebras.- 23. Complex Lie Groups; Characters.- 24. Weyl
Character Formula.- 25. More Character Formulas.- 26. Real Lie Algebras and Lie
Groups.- Appendices.- A. On Symmetric Functions.- §A.1: Basic Symmetric
Polynomials and Relations among Them.- §A.2: Proofs of the Determinantal
Identities.- §A.3: Other Determinantal Identities.- B. On Multilinear Algebra.-
§B.1: Tensor Products.- §B.2: Exterior and Symmetric Powers.- §B.3: Duals and
Contractions.- C. On Semisimplicity.- §C.1: The Killing Form and Caftan's
Criterion.- §C.2: Complete Reducibility and the Jordan Decomposition.- §C.3: On
Derivations.- D. Cartan Subalgebras.- §D.1: The Existence of Cartan
Subalgebras.- §D.2: On the Structure of Semisimple Lie Algebras.- §D.3: The
Conjugacy of Cartan Subalgebras.- §D.4: On the Weyl Group.- E. Ado's and Levi's
Theorems.- §E.1: Levi's Theorem.- §E.2: Ado's Theorem.- F. Invariant Theory for
the Classical Groups.- §F.1: The Polynomial Invariants.- §F.2: Applications to
Symplectic and Orthogonal Groups.- §F.3: Proof of Capelli's Identity.- Hints,
Answers, and References.- Index of Symbols. 

Mehr vom Verlag:

k.A.

Mehr aus der Reihe:

Mehr vom Autor:

Harris, Joe / Fulton, William

Produktdetails

Medium: Buch
Format: Kartoniert
Seiten: 568
Sprache: Englisch, Deutsch
Erschienen: Oktober 1991
Auflage: 2004
Sonstiges: 978-0-387-97495-8
Maße: 235 x 155 mm
Gewicht: 850 g
ISBN-10: 0387974954
ISBN-13: 9780387974958
Verlagsbestell-Nr.: 10034297

Bestell-Nr.: 83260 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
Bestell-Nr. Verlag: 10034297

Ist ein Paket? 0
Rohertrag: 14,95 €
Porto: 2,75 €
Deckungsbeitrag: 12,20 €

LIBRI: 0000000
LIBRI-EK*: 50.04 € (23%)
LIBRI-VK: 69,54 €
Libri-STOCK: 0
LIBRI: 097 Print on Demand. Lieferbar innerhalb von 7 bis 10 Tagen * EK = ohne MwSt.

UVP: 2 
Warengruppe: 16250 

KNO: 04424337
KNO-EK*: 44.69 € (25%)
KNO-VK: 69,54 €
KNO-STOCK: 0

KNO-SAMMLUNG: Graduate Texts in Mathematics 129
P_ABB: 144 Abb.
KNOABBVERMERK: 1991. xv, 551 S. XV, 551 p. 235 mm
KNOSONSTTEXT: 978-0-387-97495-8
Einband: Kartoniert
Auflage: 2004
Sprache: Englisch, Deutsch
Beilage(n): Paperback

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie