PORTO-
FREI

Shape Optimization under Uncertainty from a Stochastic Programming Point of View

von Held, Harald   (Autor)

Optimization problems are relevant in many areas of technical, industrial, and economic applications. At the same time, they pose challenging mathematical research problems in numerical analysis and optimization. Harald Held considers an elastic body subjected to uncertain internal and external forces. Since simply averaging the possible loadings will result in a structure that might not be robust for the individual loadings, he uses techniques from level set based shape optimization and two-stage stochastic programming. Taking advantage of the PDE's linearity, he is able to compute solutions for an arbitrary number of scenarios without significantly increasing the computational effort. The author applies a gradient method using the shape derivative and the topological gradient to minimize, e.g., the compliance . and shows that the obtained solutions strongly depend on the initial guess, in particular its topology. The stochastic programming perspective also allows incorporating risk measures into the model which might be a more appropriate objective in many practical applications.

eBook (PDF)
ebook-Hilfe 

ebook-Format   ebook-Format ebook-Format ebook-Format ebook-Format   ebook-Format

EUR 53,49

Alle Preisangaben inkl. MwSt.

Auch verfügbar als:

Sofort per Download verfügbar

 
 

Produktbeschreibung

Optimization problems are relevant in many areas of technical, industrial, and economic applications. At the same time, they pose challenging mathematical research problems in numerical analysis and optimization.

Harald Held considers an elastic body subjected to uncertain internal and external forces. Since simply averaging the possible loadings will result in a structure that might not be robust for the individual loadings, he uses techniques from level set based shape optimization and two-stage stochastic programming. Taking advantage of the PDE's linearity, he is able to compute solutions for an arbitrary number of scenarios without significantly increasing the computational effort. The author applies a gradient method using the shape derivative and the topological gradient to minimize, e.g., the compliance . and shows that the obtained solutions strongly depend on the initial guess, in particular its topology. The stochastic programming perspective also allows incorporating risk measures into the model which might be a more appropriate objective in many practical applications. 

Inhaltsverzeichnis

Solution of the Elasticity PDE.- Stochastic Programming Perspective.- Solving
Shape Optimization Problems.- Numerical Results. 

Autoreninfo

Dr. Harald Held completed his doctoral thesis at the Department of Mathematics at the University of Duisburg-Essen. He is now a Research Scientist at Siemens AG, Corporate Technology. 

Mehr vom Verlag:

Vieweg+Teubner Verlag

Mehr aus der Reihe:

Palgrave Macmillan

Mehr vom Autor:

Held, Harald

Produktdetails

Medium: eBook
Format: PDF
Kopierschutz: PERSONALISIERTES WASSERZEICHEN
Seiten: 148
Sprache: Englisch
Erschienen: Mai 2010
Auflage: 2009
ISBN-10: 383489396X
ISBN-13: 9783834893963

Bestell-Nr.: 15092287 
Libri-Verkaufsrang (LVR):
Libri-Relevanz: 0 (max 9.999)
 

Ist ein Paket? 0
Rohertrag: 7,50 €
Porto: 1,84 €
Deckungsbeitrag: 5,66 €

LIBRI: 0000000
LIBRI-EK*: 42.49 € (15%)
LIBRI-VK: 53,49 €
Libri-STOCK: 1
* EK = ohne MwSt.
P_SALEALLOWED: WORLD
DRM: 1
0 = Kein Kopierschutz
1 = PDF Wasserzeichen
2 = DRM Adobe
3 = DRM WMA (Windows Media Audio)
4 = MP3 Wasserzeichen
6 = EPUB Wasserzeichen

UVP: 2 
Warengruppe: 86280 

KNO: 00000000
KNO-EK*: € (%)
KNO-VK: 0,00 €
KNO-STOCK:

P_ABB: 148 p. 39 illus., 26 illus. in color.
Einband: PDF
Auflage: 2009
Sprache: Englisch
Beilage(n): eBook

Im Themenkatalog stöbern

› Start › eBooks

Entdecken Sie mehr

Alle Preise inkl. MwSt. , innerhalb Deutschlands liefern wir immer versandkostenfrei . Informationen zum Versand ins Ausland .

Kostenloser Versand *

innerhalb eines Werktages

OHNE RISIKO

30 Tage Rückgaberecht

Käuferschutz

mit Geld-Zurück-Garantie